

Kinematic chain and servosizing

Eng. Matea Loredana

Other selection criteria for a correct sizing of a kinematic chain

0 0

0

0

Establishment of motion objectives and technologies / product category

Ways to save energy!	
• MOTOR TECHNOLOGY IE1 / IE2 / IE3 / IE4	Up to 2-8% additional energy over standard motors
GEARBOX TECHNOLOGY Efficiency 50% (worm gearboxes) – 98 % (planetary gearboxes)	Up to 48 % additional energy over worm gearboxes
RIGID TRANMISSION ELEMENTS Gearbox eliminate friction and slippage associated with V-belts, pulleys, chains	Up to 12-15 % increase of efficiency
VFD Smart control and optimizing accelerating / decelerating ramps & turning off when motor not in use. Power factor reduction	Up to 20-50 % increase of efficiency depending on application
REGENERATIVE UNITS Recycling or sharing regenerative energy	Up to 70 % increase of efficiency (example hoisting)
SERVOSIZING OPTIMISATION & INTEGRATED DESIGN Optimising the working point and whole cinematic chain	Up to 50 % increase of efficiency

Precision planetary gearboxes technologies

	Industrial gearbox	Precision planetary gearbox
High torque density	***	****
Backlash	**	****
Torsional stiffness	**	****
Maximum torque capability	***	****
High input speed	***	****
Low inertia	**	****
Lifetime lubrication	*	****
Fix ratio (no decimals)	*	****
Bearing loadability	***	****
* Low Performance; ***** High Performance		

The **torsional stiffness** is defined as the quotient of the externally applied torque and the resulting twisting angle at the output of the **gearbox**. ... In order to determine this parameter, the **gearbox** is loaded with a continuously increasing torque up to the nominal value while the input shaft is locked.

Torsional Stiffness & Backlash

Backlash, is a clearance between mating gear teeth, is built into speed reducers to let the gears mesh without binding and to provide space for a film of lubricating oil between the teeth. This prevents overheating and tooth damage.

Torsional stiffness

Precision planetary gearboxes features for high positioning requirements

$$\Delta \varphi_{mech} = \Delta \varphi_{Backlash} + \frac{\tau}{c}$$

0

Numerical example – Rotary Table (Glass lines)

Accuracy requested 0,141° = 8,5' arcmin

	Gearbox rating		M2req [Nm]	Misalignement (stifness)	Misalignement (backlash)	Total Missalignement	Requested Accuracy [arcmin]	
	CT [Nm/arc min]	Backlash [LOW] [arcmin]		[arcmin]	[arcmin]	[arcmin]		
Product A	167	4'	700	4,19'	4'	8.19'	8,5'	Meet
Product B	83.5	3'	700	8,38'	3'	11.38'	8,5'	Not meet

How the designers answer to specific requirements?

0

Integrated solution versus common used solutions

Thank you!